84 research outputs found

    Faster Depth-Adaptive Transformers

    Full text link
    Depth-adaptive neural networks can dynamically adjust depths according to the hardness of input words, and thus improve efficiency. The main challenge is how to measure such hardness and decide the required depths (i.e., layers) to conduct. Previous works generally build a halting unit to decide whether the computation should continue or stop at each layer. As there is no specific supervision of depth selection, the halting unit may be under-optimized and inaccurate, which results in suboptimal and unstable performance when modeling sentences. In this paper, we get rid of the halting unit and estimate the required depths in advance, which yields a faster depth-adaptive model. Specifically, two approaches are proposed to explicitly measure the hardness of input words and estimate corresponding adaptive depth, namely 1) mutual information (MI) based estimation and 2) reconstruction loss based estimation. We conduct experiments on the text classification task with 24 datasets in various sizes and domains. Results confirm that our approaches can speed up the vanilla Transformer (up to 7x) while preserving high accuracy. Moreover, efficiency and robustness are significantly improved when compared with other depth-adaptive approaches.Comment: AAAI-2021. Code will appear at: https://github.com/Adaxry/Adaptive-Transforme

    BJTU-WeChat's Systems for the WMT22 Chat Translation Task

    Full text link
    This paper introduces the joint submission of the Beijing Jiaotong University and WeChat AI to the WMT'22 chat translation task for English-German. Based on the Transformer, we apply several effective variants. In our experiments, we utilize the pre-training-then-fine-tuning paradigm. In the first pre-training stage, we employ data filtering and synthetic data generation (i.e., back-translation, forward-translation, and knowledge distillation). In the second fine-tuning stage, we investigate speaker-aware in-domain data generation, speaker adaptation, prompt-based context modeling, target denoising fine-tuning, and boosted self-COMET-based model ensemble. Our systems achieve 0.810 and 0.946 COMET scores. The COMET scores of English-German and German-English are the highest among all submissions.Comment: Accepted by WMT 2022 as a system pape

    Cross-Align: Modeling Deep Cross-lingual Interactions for Word Alignment

    Full text link
    Word alignment which aims to extract lexicon translation equivalents between source and target sentences, serves as a fundamental tool for natural language processing. Recent studies in this area have yielded substantial improvements by generating alignments from contextualized embeddings of the pre-trained multilingual language models. However, we find that the existing approaches capture few interactions between the input sentence pairs, which degrades the word alignment quality severely, especially for the ambiguous words in the monolingual context. To remedy this problem, we propose Cross-Align to model deep interactions between the input sentence pairs, in which the source and target sentences are encoded separately with the shared self-attention modules in the shallow layers, while cross-lingual interactions are explicitly constructed by the cross-attention modules in the upper layers. Besides, to train our model effectively, we propose a two-stage training framework, where the model is trained with a simple Translation Language Modeling (TLM) objective in the first stage and then finetuned with a self-supervised alignment objective in the second stage. Experiments show that the proposed Cross-Align achieves the state-of-the-art (SOTA) performance on four out of five language pairs.Comment: Accepted by EMNLP 202

    Improving Translation Faithfulness of Large Language Models via Augmenting Instructions

    Full text link
    Large Language Models (LLMs) present strong general capabilities, and a current compelling challenge is stimulating their specialized capabilities, such as machine translation, through low-cost instruction tuning. The standard instruction-following data is sequentially organized as the concatenation of an instruction, an input, and a response. As the attention mechanism of LLMs has limitations on local focus, LLMs tend to focus more on the words or sentences nearby at each position. This leads to a high risk of instruction forgetting during decoding. To alleviate the above issues, We propose SWIE (Segment-Weighted Instruction Embedding) and an instruction-following dataset OVERMISS. SWIE improves the model instruction understanding by adding a global instruction representation on the following input and response representations. OVERMISS improves model faithfulness by comparing over-translation and miss-translation results with the correct translation. We apply our methods to two main-stream open-source LLMs, BLOOM and LLaMA. The experimental results demonstrate significant improvements in translation performance with SWIE based on BLOOMZ-3b, particularly in zero-shot and long text translations due to reduced instruction forgetting risk. Additionally, OVERMISS outperforms the baseline in translation performance (e.g. an increase in BLEU scores from 0.69 to 3.12 and an average improvement of 0.48 percentage comet scores for LLaMA-7b) with further enhancements seen in models combining OVERMISS and SWIE (e.g. the BLUE scores increase up to 0.56 from English to German across three different backbones), and both exhibit improvements in the faithfulness metric based on word alignment.Comment: Our code and datasets are released in Github: https://github.com/pppa2019/swie_overmiss_llm4m

    D2^2TV: Dual Knowledge Distillation and Target-oriented Vision Modeling for Many-to-Many Multimodal Summarization

    Full text link
    Many-to-many multimodal summarization (M3^3S) task aims to generate summaries in any language with document inputs in any language and the corresponding image sequence, which essentially comprises multimodal monolingual summarization (MMS) and multimodal cross-lingual summarization (MXLS) tasks. Although much work has been devoted to either MMS or MXLS and has obtained increasing attention in recent years, little research pays attention to the M3^3S task. Besides, existing studies mainly focus on 1) utilizing MMS to enhance MXLS via knowledge distillation without considering the performance of MMS or 2) improving MMS models by filtering summary-unrelated visual features with implicit learning or explicitly complex training objectives. In this paper, we first introduce a general and practical task, i.e., M3^3S. Further, we propose a dual knowledge distillation and target-oriented vision modeling framework for the M3^3S task. Specifically, the dual knowledge distillation method guarantees that the knowledge of MMS and MXLS can be transferred to each other and thus mutually prompt both of them. To offer target-oriented visual features, a simple yet effective target-oriented contrastive objective is designed and responsible for discarding needless visual information. Extensive experiments on the many-to-many setting show the effectiveness of the proposed approach. Additionally, we will contribute a many-to-many multimodal summarization (M3^3Sum) dataset.Comment: EMNLP 2023 Finding

    Is ChatGPT a Good NLG Evaluator? A Preliminary Study

    Full text link
    Recently, the emergence of ChatGPT has attracted wide attention from the computational linguistics community. Many prior studies have shown that ChatGPT achieves remarkable performance on various NLP tasks in terms of automatic evaluation metrics. However, the ability of ChatGPT to serve as an evaluation metric is still underexplored. Considering assessing the quality of natural language generation (NLG) models is an arduous task and NLG metrics notoriously show their poor correlation with human judgments, we wonder whether ChatGPT is a good NLG evaluation metric. In this report, we provide a preliminary meta-evaluation on ChatGPT to show its reliability as an NLG metric. In detail, we regard ChatGPT as a human evaluator and give task-specific (e.g., summarization) and aspect-specific (e.g., relevance) instruction to prompt ChatGPT to evaluate the generated results of NLG models. We conduct experiments on five NLG meta-evaluation datasets (including summarization, story generation and data-to-text tasks). Experimental results show that compared with previous automatic metrics, ChatGPT achieves state-of-the-art or competitive correlation with human judgments in most cases. In addition, we find that the effectiveness of the ChatGPT evaluator might be influenced by the creation method of the meta-evaluation datasets. For the meta-evaluation datasets which are created greatly depending on the reference and thus are biased, the ChatGPT evaluator might lose its effectiveness. We hope our preliminary study could prompt the emergence of a general-purposed reliable NLG metric.Comment: Both first authors contributed equally. Technical Report, 11 pages. Accepted to the 4th New Frontiers in Summarization Workshop (NewSumm@EMNLP 2023

    Self-Supervised Intensity-Event Stereo Matching

    Full text link
    Event cameras are novel bio-inspired vision sensors that output pixel-level intensity changes in microsecond accuracy with a high dynamic range and low power consumption. Despite these advantages, event cameras cannot be directly applied to computational imaging tasks due to the inability to obtain high-quality intensity and events simultaneously. This paper aims to connect a standalone event camera and a modern intensity camera so that the applications can take advantage of both two sensors. We establish this connection through a multi-modal stereo matching task. We first convert events to a reconstructed image and extend the existing stereo networks to this multi-modality condition. We propose a self-supervised method to train the multi-modal stereo network without using ground truth disparity data. The structure loss calculated on image gradients is used to enable self-supervised learning on such multi-modal data. Exploiting the internal stereo constraint between views with different modalities, we introduce general stereo loss functions, including disparity cross-consistency loss and internal disparity loss, leading to improved performance and robustness compared to existing approaches. The experiments demonstrate the effectiveness of the proposed method, especially the proposed general stereo loss functions, on both synthetic and real datasets. At last, we shed light on employing the aligned events and intensity images in downstream tasks, e.g., video interpolation application.Comment: This paper has been accepted by the Journal of Imaging Science & Technolog
    corecore